
RedWire: A Novel Way to Create and Re-Mix Games 
Jesse Himmelstein1, Mikael Couzic1, Charlene Jennett2, Anna L. Cox2, Raphael Goujet1,  

Ariel Lindner1, François Taddei1  
1Center for Research and Interdisciplinary, 10 rue Charles V, 75004 Paris, France 

2University College London, Gower Street, London WC1E 6BT, UK 
 jesse.himmelstein@parisdescartes,fr, mikaelcouzic, raphael.goujet @ gmail.com  
charlene.jennett, anna.cox @ ucl.ac.uk, francois.taddei, ariel.lindner @ inserm.fr 

 
ABSTRACT 
More and more researchers want to use games as a way of 
engaging the general public in their research; however 
game development takes time and requires significant 
programming knowledge. The goal of RedWire is to enable 
researchers to create games faster without starting from 
scratch each time. By encouraging re-mixing and mash-ups, 
we hope to provide users with an easy way of sharing 
games and creating variations of games.  

Author Keywords 
Game design; Game creation; Re-mix. 

ACM Classification Keywords 
H.1.2. User/Machine Systems: Human Factors,  
D.2.2 Design Tools and Techniques: Structured 
programming, D.2.6 Programming Environments: 
Graphical environments, interactive environments,  
D.2.13 Reusable Software: Reuse models, D.3.2 Language 
Classifications: Applicative (functional) languages 

INTRODUCTION 
Researchers are increasingly using games - as a means of 
educating players [8], collecting research data [1], and 
encouraging behaviour change [3]. Game development can 
take an extensive amount of time,  even for experienced 
game studios. In this paper we present RedWire, a new 
game engine for the design and creation of games. The goal 
of RedWire is to enable people to create games faster 
without starting from scratch each time. By encouraging re-
mixing and mash-ups, users are provided with an easy way 
of creating variations of the same game. Additionally, all 
games will be open source and available to play and re-mix 
on RedWire.  

RELATED WORK 
The inspiration for RedWire comes from the intersection of 

a number of fields: remixing, browser-based game engines, 
visual programming, and functional programming.  

Remixing is the act of adding to and modifying material 
from someone else in order to create something new. We 
draw heavily from insights of Rich Hickey, who is best 
known as the inventor of the Clojure programming 
language [4]. His analysis of the conditions that make 
certain programs easier to compose than others 
demonstrates the advantages of “untying”, or decoupling, 
program elements from each other. The more decoupled the 
elements are, the “simpler” the resulting program is, and 
easier it will to take the program apart and recompose it [5].  

Using this metric, Rich Hickey evaluates the simplicity of a 
number of common programming practices. Two practices 
that fare particularly poorly from this point of view are 
mutable state and object-oriented programming, which are 
almost universally present within game engines. Mutable 
state is complex because code that reads and or writes it 
cannot depend on it keeping its value between executions 
(or even during, in the case of multithreaded programs). 
Object-orientation, is also complex, because objects contain 
mutable state, and reference each other directly.  

Existing visual programming environments that explore the 
easy access design space include Scratch [7] and Alice [2] – 
both allow users to create games and share their projects 
with others. However we argue that these environments are 
limited because they are object-oriented with mutable state. 
Another relevant example is Max/MSP [6] which offers 
users a dataflow architecture [9] to create interactive audio 
and video exhibits. This system does not include common 
functionality for game development, and is rarely used for 
that purpose. 

REDWIRE INTERNALS 
The goal of RedWire is to let developers remix games in a 
simple (in Rich Hickey’s sense) and visual way, within the 
browser. We are targeting existing game and web 
developers who are accustomed to imperative programming 
languages. We decided to build RedWire as a functional 
framework that executes small blocks of imperative code in 
a manner that isolates, or “sandboxes”, them from directly 
modifying state. In order to explain both the goals and 
operation of this novel approach to developers, we chose to 
compare it to a common prototyping tool used in 
electronics, the breadboard. Following the electronics 

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact 
the Owner/Author.  
 
Copyright is held by the owner/author(s). 
 
CHI PLAY '14, Oct 19-22 2014, Toronto, ON, Canada 
ACM 978-1-4503-3014-5/14/10. 
http://dx.doi.org/10.1145/2658537.2661315   



metaphor, a RedWire game is made of components called 
chips that are connected to each other on a board. A chip 
communicates with the rest of the game via its pins. The 
chip only has access to the values provided via its pins, and 
cannot store its own state. 

In order to avoid the “visual spaghetti” that plagues large 
graphs, the user doesn’t wire chips directly to one another, 
but to shared buffers. There are two kinds of buffers. The 
memory buffer stores “plain-old data”, which allows the 
user to store state and hook up chips to one another. The IO 
buffers enable the purely functional system of chips to 
interact with the outside world. For example, there is a 
keyboard IO buffer that provides the list of keyboard keys 
that are currently pressed down, and a mouse IO buffer that 
gives the current mouse position. There are also output IO 
buffers such as the canvas buffer that draws the list of 
provided shapes to the screen. 

USER JOURNEY 
When a user finds a game that she would like to remix, she 
“forks” the game to create her own identical copy. Similar 
to other live coding environments, the user can keep the 
game playing while they make changes. Inspired by Brett 
Victor’s work [10], RedWire supports “recording”. When 
the user toggles the recording button and then presses play, 
RedWire memorizes all the data generated by the input IO 
services. This includes all input from the player, such as 
mouse movements, clicks, and keyboard presses. After 
stopping the recording, any changes the user makes can be 
retroactively applied to the recording, so that the user can 
directly see the results of the changes without having to 
play the game again. 

Another feature that allows the user to experiment with the 
game is muting. When a user mutes a chip, it is temporarily 
deactivated. This draws from the strengths of the RedWire 
architecture, which ensures that muting the chip does not 
prevent the rest of the game from functioning.  

HACKDAY EXAMPLE 
Earlier this year at the Citizen Cyberscience Summit 2014 
we included Redwire as a hack day challenge. The person 
that completed the challenge created a game that he called 
“Shoot sleeping computers and earn professor hats.”  

The creator of the re-mixed game had little programming 
experience. He created this game by re-mixing an existing 
game called “Stupendous Side Scrolling Space Shooter”. 
Instead of a space ship shooting asteroids, he changed the 
images so that the player is shooting un-used computer 
cycles. He added a point system consisting of “professor 
hat” badges that are won by destroying the spare computer 
cycles. He explained that his idea was to illustrate the idea 
of volunteer computing, where volunteers donate their spare 
computer processing power to be used in scientific 
research. This example illustrates the potential of Redwire 
for the design and creation of games. 

CONCLUSION 
In this paper we have presented RedWire, a new game 
engine for the design and creation of games. RedWire is the 
first game engine to adopt an architecture specifically 
designed for re-mixing and mash-ups. The engine provides 
researchers with an easy way of sharing games and creating 
variations of games for comparative study. With further 
development work, we predict that RedWire will be a 
useful tool for creating research games. In future work, we 
will add a number of features to help designers share code 
across games. We will also integrate advanced metrics, 
remote game recording, and multiplayer capabilities. 

ACKNOWLEDGMENTS 
This research was funded by the EU project Citizen 
Cyberlab (Grant No 317705).  

REFERENCES 
1. Von Ahn, L. Games with a Purpose. Computer 39, 

6 (2006), 92–94. 

2. Cooper, S., Dann, W., and Pausch, R. Alice: a 3-D 
tool for introductory programming concepts. 
Journal of Computing Sciences in Colleges 15, 
(2000), 107–116. 

3. Fogg, B.J. Persuasive Technology: Using 
Computers to Change What We Think and Do. 
Morgan Kaufmann, 2003. 

4. Hickey, R. The Clojure Programming Language. 
Proceedings of the 2008 symposium on Dynamic 
languages, ACM New York, NY, USA (2008), 1. 

5. Hickey, R. Simple Made Easy. InfoQ, 2011. 
http://www.infoq.com/presentations/Simple-Made-
Easy. 

6. Place, T. and Lossius, T. Jamoma: A Modular 
Standard for Structuring Patches in Max. 
Proceedings of the 2006 International Computer 
Music Conference, (2006), 143–146. 

7. RESNICK, M., MALONEY, J., MONROY-
HERNÁNDEZ, A., et al. Scratch: Programming for 
All. Communications of the ACM 52, (2009), 60–
67. 

8. Ritterfield, U., Cody, M., and VORDERER, P. 
Serious games: Explication of an oxymoron - 
introduction. In Serious Games - Mechanisms and 
Effects. 2009, 4–9. 

9. Sousa, T. Dataflow Programming Concept, 
Languages and Applications. Doctoral Symposium 
on Informatics Engineering, (2012). 

10. Victor, B. Inventing on Principle. 2012. 
https://vimeo.com/36579366.  

 


